Set stuff
there is some intresting question about discrete math
why \( \mathcal{P}(\emptyset) = \lbrace \emptyset \rbrace \)
consider \( \mathcal(S) \) where \( S \) is a set, for example
- if \( S = \lbrace a \rbrace \), then \( \mathcal{P}(S) = \lbrace \emptyset, \lbrace a \rbrace \rbrace \), same as \( \mathcal{P}(a) \)
- if \( S = \lbrace a, b \rbrace \), then \( \mathcal{P}(S) = \lbrace \emptyset, \lbrace a \rbrace, \lbrace b \rbrace, \lbrace a, b \rbrace \rbrace \), same as \( \mathcal{P}(a, b) \)
- if \( S = \lbrace \emptyset \rbrace \), then \( \mathcal{P}(S) = \lbrace \emptyset, \lbrace \emptyset \rbrace \rbrace \), same as \( \mathcal{P}(\emptyset) \)
so, because \( \lbrace \rbrace \) usually hidden, \( \mathcal{P}(\emptyset) = \lbrace \emptyset \rbrace \)
let \( A = \emptyset, B = \emptyset \), how to \( A \times B \)
Consider \( A \times B = \lbrace (a,b) | a \in A, b \in B \rbrace \)
because
- A is empty, no elements can be paired
- B is also empty
conlusion: no paired element = empty
proof by cardinality \( |A| = 0, |B| = 0, \text{so, when } |A \times B| = |A| \times |B| = 0 \times 0 = 0 \)
does \( P(\emptyset) = \lbrace \lbrace \rbrace \rbrace = \lbrace \emptyset \rbrace \) ?
true, this is due \( \lbrace \emptyset \rbrace \) same as \( \lbrace \lbrace \rbrace \rbrace \), then consider example \( P(a) = \lbrace \lbrace \rbrace, \lbrace a \rbrace\rbrace \)
Suppose X and Z are independent of each other
- \( | \mathcal{P}(X \cap Z)| \)
- \( | X - Z | \)
- \( | X \oplus Z | \)
- \( | X \cap Z | \)
- \( | \mathcal{P}(X) \cup \mathcal{P}(Z)| \)
- \( | \overline{\mathcal{P}(X) \cup \mathcal{P}(Z)}| \)
nb: bagian ini belum jadi